CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Markov Weight Fields for face sketch synthesis
Authors
Z Kuang
KKY Wong
H Zhou
Publication date
1 January 2012
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Posters 1C - Vision for Graphics, Sensors, Medical, Vision for Robotics, ApplicationsGreat progress has been made in face sketch synthesis in recent years. State-of-the-art methods commonly apply a Markov Random Fields (MRF) model to select local sketch patches from a set of training data. Such methods, however, have two major drawbacks. Firstly, the MRF model used cannot synthesize new sketch patches. Secondly, the optimization problem in solving the MRF is NP-hard. In this paper, we propose a novel Markov Weight Fields (MWF) model that is capable of synthesizing new sketch patches. We formulate our model into a convex quadratic programming (QP) problem to which the optimal solution is guaranteed. Based on the Markov property of our model, we further propose a cascade decomposition method (CDM) for solving such a large scale QP problem efficiently. Experimental results on the CUHK face sketch database and celebrity photos show that our model outperforms the common MRF model used in other state-of-the-art methods. © 2012 IEEE.published_or_final_versionThe IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI., 16-21 June 2012. In IEEE Conference on Computer Vision and Pattern Recognition Proceedings, 2012, p. 1091-109
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Fcvpr.2012.6...
Last time updated on 22/07/2021
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/160098
Last time updated on 01/06/2016