CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Using self-driven AC-DC synchronous rectifier as a direct replacement for traditional power diode rectifier
Authors
WC Ho
SY Hui
X Liu
WX Zhong
Publication date
1 January 2012
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Synchronous rectification has previously been adopted in switched-mode circuits for reducing the conduction losses particularly in high-frequency, low-voltage, and high-current applications. This paper presents a generalized self-driven ac-dc synchronous rectification technique that can be used even at mains frequency to develop an ac-dc synchronous rectifier that behaves like a diode bridge but with much reduced conduction losses and without control integrated circuits. This generalized concept can be extended from single-phase to multiphase systems. Experiments based on 1- and 2-kW single-phase systems have been successfully conducted for capacitive, inductive, and resistive loads. Very significant power loss reduction (over 50%) has been achieved in the rectification stage at both 110- and 220-V ac mains operations. This patent-pending circuit can be regarded as a direct replacement of a general-purpose diode rectifier. Due to the reduction of power loss, further reduction in the size and cost of the heat sink or thermal management for the power circuit becomes possible. © 2011 IEEE.published_or_final_versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/155671
Last time updated on 01/06/2016