CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Computer-aided design and optimization of high-efficiency LLC series resonant converter
Authors
GKY Ho
J Lam
+3 more
BWK Ling
BMH Pong
R Yu
Publication date
1 January 2012
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
High conversion efficiency is desired in switch mode power supply converters. Computer-aided design optimization is emerging as a promising way to design power converters. In this work a systematic optimization procedure is proposed to optimize LLC series resonant converter full load efficiency. A mode solver technique is proposed to handle LLC converter steady-state solutions. The mode solver utilizes numerical nonlinear programming techniques to solve LLC-state equations and determine operation mode. Loss models are provided to calculate total component losses using the current and voltage information derived from the mode solver. The calculated efficiency serves as the objective function to optimize the converter efficiency. A prototype 300-W 400-V to 12-V LLC converter is built using the optimization results. Details of design variables, boundaries, equality/inequality constraints, and loss distributions are given. An experimental full-load efficiency of 97.07 is achieved compared to a calculated 97.4 efficiency. The proposed optimization procedure is an effective way to design high-efficiency LLC converters. © 1986-2012 IEEE.published_or_final_versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/157188
Last time updated on 01/06/2016