research

Regulatory role of proheparanase with peri-synaptic heparan sulfate proteoglycan and AMPA-type glutamate receptor in synaptic plasticity

Abstract

Poster Presentation: P59AMPA-type glutamate receptors (AMPAR) govern excitatory synaptic transmission. Perineuronal heparan sulfates (HS) have been implicated in controlling the open-state of AMPAR. Our finding of neuronal heparanase expression in adult rats led us to test (1) if neuronal heparanase is secreted and (2) if the secreted form acts on perineuronal HS to modulate synaptic plasticity. Neuronal secretion of heparanase was triggered by phorbol ester of rat hippocampal neurons in culture. Western blot analysis of the secreted product revealed enzymatically inactive proheparanase, but not the enzymatically active heparanase. Synaptosomes prepared from phorbol ester-treated rat cortexslices showed enrichment in proheparanase; co-immunoprecipitation studies further showed association of AMPAR subunits (GluA1 and GluA2/3) with both syndecan-3 (a transmembrane HS-proteoglycan) and proheparanase, suggesting their partnership in the peri-synaptic environment. Treatment of hippocampal neurons in culture with recombinant proheparanase triggered internalization of proheparanase, perineuronal HS-proteoglycans and AMPARs, suggesting their clustering as a functional complex. Heparitinase pre-treatment of hippocampal neuron cultures reduced proheparanase-induced internalization of AMPARs, suggesting that the HS moiety is critical for effecting the partnership. Treatment of hippocampal slices with recombinant proheparanase resulted in down-regulation of both basal synaptic strength and LTP at Schaffer collateral synapses. These results reveal a novel role of neuronal proheparanase in resetting AMPAR and perineuronal HS levels at the synapse and thus the modulation of synaptic plasticity.postprin

    Similar works