CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Immunity-based evolutionary algorithm for optimal global container repositioning in liner shipping
Authors
HYK Lau
KL Mak
EYC Wong
Publication date
1 January 2010
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
Global container repositioning in liner shipping has always been a challenging problem in container transportation as the global market in maritime logistics is complex and competitive. Supply and demand are dynamic under the ever changing trade imbalance. A useful computation optimization tool to assist shipping liners on decision making and planning to reposition large quantities of empty containers from surplus countries to deficit regions in a cost effective manner is crucial. A novel immunity-based evolutionary algorithm known as immunity-based evolutionary algorithm (IMEA) is developed to solve the multi-objective container repositioning problems in this research. The algorithm adopts the clonal selection and immune suppression theories to attain the Pareto optimal front. The proposed algorithm was verified with benchmarking functions and compared with four optimization algorithms to assess its diversity and spread. The developed algorithm provides a useful means to solve the problem and assist shipping liners in the global container transportation operations in an optimized and cost effective manner. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/145006
Last time updated on 01/06/2016