CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
A temporal latent topic model for facial expression recognition
Authors
KP Chan
L Shang
Publication date
1 January 2011
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
Posters: no. 128LNCS v. 6495 is conference proceedings of the 10th Asian Conference on Computer Vision, Queens, ACCVIn this paper we extend the latent Dirichlet allocation (LDA) topic model to model facial expression dynamics. Our topic model integrates the temporal information of image sequences through redefining topic generation probability without involving new latent variables or increasing inference difficulties. A collapsed Gibbs sampler is derived for batch learning with labeled training dataset and an efficient learning method for testing data is also discussed. We describe the resulting temporal latent topic model (TLTM) in detail and show how it can be applied to facial expression recognition. Experiments on CMU expression database illustrate that the proposed TLTM is very efficient in facial expression recognition. © 2011 Springer-Verlag Berlin Heidelberg.postprintThe 10th Asian Conference on Computer Vision (ACCV 2010), Queenstown, New Zealand, 8-12 November 2010. In Lecture Notes in Computer Science, 2010, v. 6495, p. 51-6
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/142604
Last time updated on 01/06/2016
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1007%2F978-3-642-1...
Last time updated on 21/07/2021