research

Morphological and electrochemical characterization of TiO2 blocking layers in Dye Sensitized Solar Cells

Abstract

In recent years much attention has been paid to dye-sensitized solar cells due to their low cost and wide applicability. The modest efficiencies achieved by these devices are caused by several phenomena, including electronic losses due to parasitic electronic reactions. One of the most common way to reduce the electronic losses is to introduce a compact layer of conductive material (blocking layer) between the transparent conductive substrate and the sensitized semiconductor film. Aim of this work was to asses the correlation between the most common deposition processes (spin coating and dip coating) and the morphological and electrochemical properties of the blocking layers produced by them. The blocking layer of TiO2 was prepared on FTO glass, and the results obtained with the conventional dip coating were compared with the ones coming from spin coating of two different solutions of TiCl4 (50 mM). The TiO2 films obtained were deeply characterized in particular from the electrochemical point of view in order to assess the best conditions needed to obtain an efficient blocking layer. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to understand the electrochemical behavior of the blocking layer (BL

    Similar works