thesis

Analysis and Parameterization of Triangulated Surfaces

Abstract

This dissertation deals with the analysis and parameterization of surfaces represented by triangle meshes, that is, piecewise linear surfaces which enable a simple representation of 3D models commonly used in mathematics and computer science. Providing equivalent and high-level representations of a 3D triangle mesh M is of basic importance for approaching different computational problems and applications in the research fields of Computational Geometry, Computer Graphics, Geometry Processing, and Shape Modeling. The aim of the thesis is to show how high-level representations of a given surface M can be used to find other high-level or equivalent descriptions of M and vice versa. Furthermore, this analysis is related to the study of local and global properties of triangle meshes depending on the information that we want to capture and needed by the application context. The local analysis of an arbitrary triangle mesh M is based on a multi-scale segmentation of M together with the induced local parameterization, where we replace the common hypothesis of decomposing M into a family of disc-like patches (i.e., 0-genus and one boundary component) with a feature-based segmentation of M into regions of 0-genus without constraining the number of boundary components of each patch. This choice and extension is motivated by the necessity of identifying surface patches with features, of reducing the parameterization distortion, and of better supporting standard applications of the parameterization such as remeshing or more generally surface approximation, texture mapping, and compression. The global analysis, characterization, and abstraction of M take into account its topological and geometric aspects represented by the combinatorial structure of M (i.e., the mesh connectivity) with the associated embedding in R^3. Duality and dual Laplacian smoothing are the first characterizations of M presented with the final aim of a better understanding of the relations between mesh connectivity and geometry, as discussed by several works in this research area, and extended in the thesis to the case of 3D parameterization. The global analysis of M has been also approached by defining a real function on M which induces a Reeb graph invariant with respect to affine transformations and best suited for applications such as shape matching and comparison. Morse theory and the Reeb graph were also used for supporting a new and simple method for solving the global parameterization problem, that is, the search of a cut graph of an arbitrary triangle mesh M. The main characteristics of the proposed approach with respect to previous work are its capability of defining a family of cut graphs, instead of just one cut, of bordered and closed surfaces which are treated with a unique approach. Furthermore, each cut graph is smooth and the way it is built is based on the cutting procedure of 0-genus surfaces that was used for the local parameterization of M. As discussed in the thesis, defining a family of cut graphs provides a great flexibility and effective simplifications of the analysis, modeling, and visualization of (time-depending) scalar and vector fields; in fact, the global parameterization of M enables to reduce th

    Similar works