Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae) : implications for forecasting climate change impacts

Abstract

The original publication is available at http://www.journals.elsevier.com/journal-of-insect-physiology/For tsetse (Glossina spp.), the vectors of human and animal trypanosomiases, the physiological mechanisms linking variation in population dynamics with changing weather conditions have not been well established. Here, we investigate high- and low-temperature tolerance in terms of activity limits and survival in a natural population of adult Glossina pallidipes from eastern Zambia. Due to increased interest in chilling flies for handling and aerial dispersal in sterile insect technique control and eradication programmes, we also provide further detailed investigation of low-temperature responses. In wild-caught G. pallidipes, the probability of survival for 50% of the population at low-temperatures was at 3.7, 8.9 and 9.6 °C (95% CIs: ±1.5 °C) for 1, 2 and 3 h treatments, respectively. At high temperatures, it was estimated that treatments at 37.9, 36.2 and 35.6 °C (95% CIs: ±0.5 °C) would yield 50% population survival for 1, 2 and 3 h, respectively. Significant effects of time and temperature were detected at both temperature extremes (GLZ, p0.5 in all cases). However, flies with low chill coma values had the highest body water and fat content, indicating that when energy reserves are depleted, low-temperature tolerance may be compromised. Overall, these results suggest that physiological mechanisms may provide insight into tsetse population dynamics, hence distribution and abundance, and support a general prediction for reduced geographic distribution under future climate warming scenarios. © 2007 Elsevier Ltd. All rights reserved.Publishers' Versio

    Similar works