CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Myriocin slows the progression of established atherosclerotic lesions in apolipoprotein E gene knockout mice
Authors
Brett Garner
Elias N Glaros
+4 more
W Jessup
Woojin Scott Kim
C M Quinn
Kerry-Anne Rye
Publication date
1 January 2008
Publisher
'Sociological Research Online'
Abstract
The serine palmitoyl transferase inhibitor myriocin potently suppresses the development of atherosclerosis in apolipoprotein E (apoE) gene knockout (apoE-/-) mice fed a high-fat diet. This is associated with reduced plasma sphingomyelin (SM) and glycosphingolipid levels. Furthermore, oral administration of myriocin decreases plasma cholesterol and triglyceride (TG) levels. Here, we aimed to determine whether myriocin could inhibit the progression (or stimulate the regression) of established atherosclerotic lesions and to examine potential changes in hepatic and plasma lipid concentrations. Adult apoE-/- mice were fed a high-fat diet for 30 days, and lesion formation was histologically confirmed. Replicate groups of mice were then transferred to either regular chow or chow containing myriocin (0.3 mg/kg/day) and maintained for a further 60 days. Myriocin significantly inhibited the progression of established atherosclerosis when combined lesion areas (aortic sinus, arch, and celiac branch point) were measured. Although the inhibition of lesion progression was observed mainly in the distal regions of the aorta, regression of lesion size was not detected. The inhibition of lesion progression was associated with reductions in hepatic and plasma SM, cholesterol, and TG levels and increased hepatic and plasma apoA-I levels, indicating that the modulation of pathways associated with several classes of atherogenic lipids may be involved. Copyright ©2008 by the American Society for Biochemistry and Molecular Biology, Inc
Similar works
Full text
Available Versions
Research Online
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ro.uow.edu.au:ihmri-1033
Last time updated on 26/05/2016