School of Mechanical, Materials and Mechatronic Engineering - Faculty of Engineering
Abstract
The aim of this work is to examine the physical and adhesive properties of a number of crosslinked polymers made by e click e chemistry, a technique, that has been explored thus far only in the context of drug discovery. The polymers were synthesised between copper and brass plates. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to measure the glass transition temperature (Tg) of these materials. The polymers were found to have unusually high Tg values, sometimes up to 60oC higher than the curing temperature, depending on the cure time. The adhesives properties of these materials on brass substrates have also been examined using a fracture mechanics test, the double cantilever beam test (DCB). The adhesion was found to be very similar (sometimes higher) than that of some commercial epoxy systems. Finally, the copper-polymer interface was characterized using the surface enhanced Raman scattering (SERS) technique. SERS showed the presence of a triazole-based compound adsorbed on copper. The adhesion strength of these & quote click & quote polymers on copper substrates is believed to be function of the formation of the triazole-copper complex