research

D-amino acids govern stationary phase cell wall remodeling in bacteria

Abstract

4 pages, 4 figures.-- PMID: 19762646 [PubMed].-- Supporting information available at: http://www.sciencemag.org/cgi/content/full/sci;325/5947/1552/DC1In all known organisms, amino acids are predominantly thought to be synthesized and used as their L-enantiomers. Here, we found that bacteria produce diverse D-amino acids as well, which accumulate at millimolar concentrations in supernatants of stationary phase cultures. In Vibrio cholerae, a dedicated racemase produced D-Met and D-Leu, whereas Bacillus subtilis generated D-Tyr and D-Phe. These unusual D-amino acids appear to modulate synthesis of peptidoglycan, a strong and elastic polymer that serves as the stress-bearing component of the bacterial cell wall. D-Amino acids influenced peptidoglycan composition, amount, and strength, both by means of their incorporation into the polymer and by regulating enzymes that synthesize and modify it. Thus, synthesis of D-amino acids may be a common strategy for bacteria to adapt to changing environmental conditions.This work was supported by Howard Hughes Medical Institute (HHMI); NIH AI-R37-42347 (M.K.W.) and CA24487 and GM086258 (J.C.); Ministry of Education and Science, Spain (MEC) BFU2006-04574 and Fundación Ramón Areces (M.A.P.); Jane Coffin Childs Fellowship (H.L.); MEC Fellowship (F.C.); and HHMI Exceptional Research Opportunities (EXROP) (C.N.T.).Peer reviewe

    Similar works