research

Expression of Canonical SOS Genes Is Not under LexA Repression in Bdellovibrio bacteriovorus

Abstract

The here-reported identification of the LexA-binding sequence of Bdellovibrio bacteriovorus, a bacterial predator belonging to the δ-Proteobacteria, has made possible a detailed study of its LexA regulatory network. Surprisingly, only the lexA gene and a multiple gene cassette including dinP and dnaE homologues are regulated by the LexA protein in this bacterium. In vivo expression analyses have confirmed that this gene cassette indeed forms a polycistronic unit that, like the lexA gene, is DNA damage inducible in B. bacteriovorus. Conversely, genes such as recA, uvrA, ruvCAB, and ssb, which constitute the canonical core of the Proteobacteria SOS system, are not repressed by the LexA protein in this organism, hinting at a persistent selective pressure to maintain both the lexA gene and its regulation on the reported multiple gene cassette. In turn, in vitro experiments show that the B. bacteriovorus LexA-binding sequence is not recognized by other δ-Proteobacteria LexA proteins but binds to the cyanobacterial LexA repressor. This places B. bacteriovorus LexA at the base of the δ-Proteobacteria LexA family, revealing a high degree of conservation in the LexA regulatory sequence prior to the diversification and specialization seen in deeper groups of the Proteobacteria phylum.This work was funded by grant BFM2004-02768/BMC from the Ministerio de Educación y Ciencia (MEC) de España and 2001SGR-206 from the Departament d’Universitats, Recerca i Societat de la Informació (DURSI) de la Generalitat de Catalunya and by the Consejo Superior de Investigaciones Científicas (CSIC). N. Salvador was recipient of a predoctoral fellowship from the DURSI, and S. Campoy is recipient of a postdoctoral contract from INIA-IRTA.Peer reviewe

    Similar works