Two dozen networks are analyzed using three parameters that attempt to capture important properties of social networks: leadership L, member bonding B, and diversity of expertise D. The first two of these parameters have antecedents, the third is new. A key part of the analysis is to examine networks at multiple scales by dissecting the entire network into its n subgraphs of a given radius of two edge steps about each of the n nodes. This scale-based analysis reveals constraints on what we have dubbed "cognitive" networks, as contrasted with biological or physical networks. Specifically, "cognitive" networks appear to maximize bonding and diversity over a range of leadership dominance. Asymptotic relations between the bonding and diversity measures are also found when small, nearly complete subgraphs are aggregated to form larger networks. This aggregation probably underlies changes in a regularity among the LBD parameters; this regularity is a U-shaped function of networks size, n, which is minimal for networks around 80 or so nodes