thesis

Design algorithms for parallel transmission in magnetic resonance imaging

Abstract

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 153-158).The focus of this dissertation is on the algorithm design, implementation, and validation of parallel transmission technology in Magnetic Resonance Imaging (MRI). Novel algorithms are proposed which yield excellent excitation control, low RF power requirements, methods that extend to non-linear large-flip-angle excitation, as well as a new algorithm for simultaneous spectral and spatial excitation critical to quantification of low-SNR brain metabolites in MR spectroscopic imaging. For testing and validation, these methods were implemented on a newly developed parallel transmission platform on both 3 T and 7 T MRI scanners to demonstrate the ability of these methods for highfidelity B1+ mitigation, first by excitation of phantoms and then by human imaging. Further, spatially tailored RF pulses were demonstrated beyond conventional slice- or slab-selective excitation.by Kawin Setsompop.Ph.D

    Similar works