research

Taxation: Prepaid Income Deferrals and the “Claim of Right Doctrine”

Abstract

The effects of wear to friction are studied based on constant-speed friction data collected from dedicated experiments during accelerated wear tests. It is shown how the effects of temperature and load uncertainties produce larger changes to friction than those caused by wear, motivating the consideration of these effects. Based on empirical observations, an extended friction model is proposed to describe the effects of speed, load, temperature and wear. Assuming availability of such model and constant-speed friction data, a maximum likelihood wear estimator is proposed.  A criterion for experiment design is proposed which selects speed points to collect constant-speed friction data which improves the achievable performance bound for any unbiased wear estimator. Practical issues related to experiment length are also considered. The performance of the wear estimator under load and temperature uncertainties is found by means of simulations and verified under three case studies based on real data

    Similar works