thesis

Stochastic chaos and thermodynamic phase transitions : theory and Bayesian estimation algorithms

Abstract

Thesis (M. Eng. and S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 177-200).The chaotic behavior of dynamical systems underlies the foundations of statistical mechanics through ergodic theory. This putative connection is made more concrete in Part I of this thesis, where we show how to quantify certain chaotic properties of a system that are of relevance to statistical mechanics and kinetic theory. We consider the motion of a particle trapped in a double-well potential coupled to a noisy environment. By use of the classic Langevin and Fokker-Planck equations, we investigate Kramers' escape rate problem. We show that there is a deep analogy between kinetic rate theory and stochastic chaos, for which we propose a novel definition. In Part II, we develop techniques based on Volterra series modeling and Bayesian non-linear filtering to distinguish between dynamic noise and measurement noise. We quantify how much of the system's ergodic behavior can be attributed to intrinsic deterministic dynamical properties vis-a-vis inevitable extrinsic noise perturbations.by Zhi-De Deng.M.Eng.and S.B

    Similar works