research

Investigation of thermal filamentation instability over Gakona, Alaska

Abstract

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2007.Includes bibliographical references (p. 43).The thermal filamentation instability has been invoked to explain the formation of parallel plate waveguides in mid-latitude ionospheric plasmas during Arecibo, Puerto Rico heating experiments in 1997. The geometry of the kilometer-scale parallel plates predicted by thermal filamentation depends on the mode of the transmitted heater wave, as does the threshold to excite this instability. While plasma heating can excite small-scale irregularities via parametric instabilities, thermal filamentation is thought to produce large-scale irregularities. In Arecibo, the threshold for X-mode to induce irregularities was found to be greater than 1 V/m, while for O-mode it was on the order of mV/m. In recent plasma experiments in high-latitude ionospheric plasmas, carried out at the HAARP facility in Gakona, Alaska in summer 2005, spring 2006, and summer 2006, a weakening in ionogram traces was observed during O-mode and X-mode heating, leading to a scenario detailing the effects of thermal filamentation and short-scale irregularities caused by heating. The Gakona experiments using a high power HF heating facility and multiple diagnostic instruments shed light on the important role of the thermal filamentation instability in generating electromagnetic wave-induced plasma turbulence with a broad spectrum of wavelengths, ranging from meter to kilometer scales.by Joel Cohen.S.B

    Similar works