CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms
Authors
Vicent Bonet-Costa
Rosa Cristòfol
+8 more
Juan Pablo Gambini
Yoelvis García-Mesa
Lydia Giménez-Llort
M. C. Gómez-Cabrera
Helios Pareja-Galeano
Susana Revilla
Coral Sanfeliu
J. Viña
Publication date
1 July 2014
Publisher
'Elsevier BV'
Doi
Abstract
Postmenopausal women may be more vulnerable to cognitive loss and Alzheimer's disease (AD) than premenopausal women because of their deficiency in estrogens, in addition to their usually older age. Aerobic physical exercise has been proposed as a therapeutic approach for maintaining health and well-being in postmenopausal women, and for improving brain health and plasticity in populations at high risk for AD. To study the neuroprotective mechanisms of physical exercise in a postmenopausal animal model, we submitted previously ovariectomized, six-month old non-transgenic and 3xTg-AD mice to three months of voluntary exercise in a running wheel. At nine months of age, we observed lower grip strength and some exacerbation of the behavioral and psychological symptoms of dementia (BPSD)-like involving active exploratory activities. A similar major cognitive impairment was observed of ovariectomized 3xTg-AD mice in comparison with sham-operated 3xTg-AD mice. A reduction of bodily fitness and lack of retention of memory were observed in the ovariectomized non-transgenic mice. Physical exercise protected against all deleterious behaviors and normalized learning and memory. It also protected against body frailty, as expected. Analyses of hippocampal key markers of antioxidant and neuroplasticity signaling pathways, showed that ovariectomy impairs the activation of CREB through physical exercise. Furthermore, molecular and behavioral correlates suggested a central role of BDNF in the neuroprotection mediated by physical exercise therapy against apathy and memory loss induced by ovariectomy and the AD-genotype. © 2014 Elsevier Ltd.This study was supported by grants: SAF2009-13093-C02-02, SAF2010-19498, SAF2012-39852-C02-02 and CSD2010-00045 from the Spanish MINECO; 2009/SGR/214 from the Generalitat and 062931 from the Fundació La Marató de TV3, of Catalonia; and 35NEURO GentxGent. Yoelvis García-Mesa acknowledges support received from the Fundació La Marató de TV3Peer Reviewe
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Digital.CSIC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:digital.csic.es:10261/1249...
Last time updated on 25/05/2016
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.psyneuen....
Last time updated on 13/11/2020