Resistance of micro-organisms to high pressure is variable and directly related to extrinsic and intrinsic factors. Pressures of 100, 200, 300, 350 and 400 MPa were applied at 20°C for 10 min and at 10°C for 20 rain using strains of Gram-positive and Gram-negative bacteria, moulds and yeasts, as well as spores of Gram-positive bacteria. The results showed that at pressures of 100 and 200 MPa, decreases in microbial populations were not significant, whereas the populations of all the micro-organisms tested decreased considerably at a pressure of 300 MPa. A pressure of 300 MPa at 10°C for 20 min was required to completely reduce the population of Saccharomyces cerevisiae, and a pressure of 350 MPa was needed to reduce most of the Gram-negative bacteria and moulds. The Gram-positive bacteria were more resistant, and pressures of 400 MPa were unable to completely reduce their populations. The different pressures employed had little effect on the initial numbers of spores. The initial populations of viable aerobic mesophiles and moulds and yeasts in vegetables (lettuce and tomatoes) decreased I log unit at pressures of 300 MPa and above under both sets of experimental treatment conditions. However, treatment at that pressure also resulted in alterations in the organoleptic properties of the samples. In the tomatoes, the skin loosened and peeled away, though the flesh remained firm, and colour and flavour were unchanged. The lettuce remained firm but underwent browning; flavour was unaffected. In vegetables use of moderate pressures in combination with other treatment conditions would appear to be required to reduce the populations of contaminating micro-organisms while avoiding the undesirable alterations in organoleptic properties that take place at 300 MPa.Peer Reviewe