research

Protein tyrosine phosphatase 1B modulates GSK3b/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity

Abstract

Acute hepatic failure secondary to acetaminophen (APAP) poisoning is associated with high mortality. Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of tyrosine kinase growth factor signaling. In the liver, this pathway confers protection against injury. However, the involvement of PTP1B in the intracellular networks activated by APAP is unknown. We have assessed PTP1B expression in APAP-induced liver failure in humans and its role in the molecular mechanisms that regulate the balance between cell death and survival in human and mouse hepatocytes, as well as in a mouse model of APAPinduced hepatotoxicity. PTP1B expression was increased in human liver tissue removed during liver transplant from patients for APAP overdose. PTP1B was upregulated by APAP in primary human and mouse hepatocytes together with the activation of c-jun (NH2) terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), resulting in cell death. Conversely, Akt phosphorylation and the antiapoptotic Bcl2 family members BclxL and Mcl1 were decreased. PTP1B deficiency in mouse protects hepatocytes against APAP-induced cell death, preventing glutathione depletion, reactive oxygen species (ROS) generation and activation of JNK and p38 MAPK. APAP-treated PTP1B-/- hepatocytes showed enhanced antioxidant defense through the glycogen synthase kinase 3 (GSK3)b/Src kinase family (SKF) axis, delaying tyrosine phosphorylation of the transcription factor nuclear factor-erythroid 2-related factor (Nrf2) and its nuclear exclusion, ubiquitination and degradation. Insulin-like growth factor-I receptor-mediated signaling decreased in APAP-treated wild-type hepatocytes, but was maintained in PTP1B-/- cells or in wild-type hepatocytes with reduced PTP1B levels by RNA interference. Likewise, both signaling cascades were modulated in mice, resulting in less severe APAP hepatotoxicity in PTP1B-/- mice. Our results demonstrated that PTP1B is a central player of the mechanisms triggered by APAP in hepatotoxicity, suggesting a novel therapeutic target against APAPinduced liver failure. © 2013 Macmillan Publishers Limited. All rights reserved.We acknowledge the following grant support: SAF2012-33283 (MINECO, Spain), Comunidad de Madrid S2010/BMD-2423, EFSD and Amylin Paul Langerhans Grant and Centro de Investigaciones Biomédicasen Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, ISCIII, Spain) (to AMV); SAF2012-38048 (MINECO, Spain) (to JM-P); PI09/0185 and Centro de Investigacion Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD, ISCIII, Spain) (to JM); AGL2010-17579 (MINECO, Spain) (to LG); and SAF2010-17822 (MINECO, Spain) (to AC).Peer Reviewe

    Similar works