research

Correlation between magnetic and transport properties in nanocrystalline Fe thin films: A grain-boundary magnetic disorder effect

Abstract

We report on transport and magnetic measurements of islanded Fe(110) thin films. The electrical resistivity exhibits an anomalous increase at low temperatures, which disappears under the action of a magnetic field. Since such an anomaly completely disappears under the action of a magnetic field, it is inferred that it originates from spin-dependent scattering. We interpret the strong changes in the spin-dependent scattering in our films to be due to a low-temperature spin freezing of the island boundary magnetic regions that impedes ferromagnetic exchange between islands. A consequence of this magnetic behavior is the random arrangement of the individual magnetization, determined by the magnetocrystalline anisotropy of each island, resulting in an increase of the resistivity below the freezing temperature.Z.S. and J.L.M. acknowledge the Comunidad de Madrid for financial support. Work was performed under the financial support of the Comunidad de Madrid and the Spanish Commission of Science and Technology.Peer reviewe

    Similar works