Simulation and Experiments of Electron Cooling in HIRFL-CSRm

Abstract

本论文从理论、模拟和实验三方面研究了HIRFL-CSRm离子束的电子冷却累积过程。 在没有内靶实验装置的电子冷却储存环中,离子束的冷却过程,是离子在电子冷却效应和以束内散射为主的各种加热效应共同作用下,发射度收缩并趋于平衡的过程。其中磁化冷却力的求解是研究电子冷却效应的理论基础,本论文采用Monte-Carlo技术解决了两体碰撞模型下磁化冷却力复杂积分表达式的求解,探讨了影响磁化冷却力的参数。针对离子束内散射过程,论文在B-M模型下束内散射率表达式的基础上,通过应用Carlson第二类椭圆积分形式实现了束内散射导致的束流发射度和动量分散变化的快速计算,分析了其对HIRFL-CSRm冷却累积过程的影响。 由于冷却力是离子-电子相对速度的复杂函数,而且考虑离子在储存环中的横向振荡和纵向运动特性,以及电子束空间电荷效应等情况下,冷却过程中束流发射度和动量分散的时间变化率无法解析计算。本论文采用模型离子跟踪方法,模拟了离子束特征参数在冷却过程中的变化,明确了电子束参数对冷却过程的影响函数,计算了几种典型离子束冷却累积的最佳参数值,并对测量冷却效应的实验方法进行了模拟研究。 对HIRFL-CSRm五种重离子束流(7.07MeV/u12C4+、8.28MeV/u12C5+、7.07MeV/u12C6+、21.6MeV/u36Ar18+、2.93MeV/u129Xe27+)的电子冷却和累积过程进行了初步的实验研究。采用电子束能量调制的方法,测量了12C6+和36Ar18+离子束受到的纵向冷却力随离子-电子相对速度变化的函数,分析了电子束密度、形状及电子束-离子束夹角对36Ar18+离子受到的纵向冷却力大小的影响。通过改变Bump触发的间隔时间研究了12C6+离子的横向冷却效应。实验研究了电子束密度、形状对几种束流的累积效率及储存束流寿命的影响,以及Bump幅度、Bump时间结构、注入间隔时间、绝热展开因子等参数对束流累积效率的影响。实验测量并理论验证了12C6+和36Ar18+强流束的集体效应,探讨了强流离子束的不稳定性。最后,论文展望了在HIRFL-CSR上进一步开展电子冷却实验的方向本论文从理论、模拟和实验三方面研究了HIRFL-CSRm离子束的电子冷却累积过程。 在没有内靶实验装置的电子冷却储存环中,离子束的冷却过程,是离子在电子冷却效应和以束内散射为主的各种加热效应共同作用下,发射度收缩并趋于平衡的过程。其中磁化冷却力的求解是研究电子冷却效应的理论基础,本论文采用Monte-Carlo技术解决了两体碰撞模型下磁化冷却力复杂积分表达式的求解,探讨了影响磁化冷却力的参数。针对离子束内散射过程,论文在B-M模型下束内散射率表达式的基础上,通过应用Carlson第二类椭圆积分形式实现了束内散射导致的束流发射度和动量分散变化的快速计算,分析了其对HIRFL-CSRm冷却累积过程的影响。 由于冷却力是离子-电子相对速度的复杂函数,而且考虑离子在储存环中的横向振荡和纵向运动特性,以及电子束空间电荷效应等情况下,冷却过程中束流发射度和动量分散的时间变化率无法解析计算。本论文采用模型离子跟踪方法,模拟了离子束特征参数在冷却过程中的变化,明确了电子束参数对冷却过程的影响函数,计算了几种典型离子束冷却累积的最佳参数值,并对测量冷却效应的实验方法进行了模拟研究。 对HIRFL-CSRm五种重离子束流(7.07MeV/u12C4+、8.28MeV/u12C5+、7.07MeV/u12C6+、21.6MeV/u36Ar18+、2.93MeV/u129Xe27+)的电子冷却和累积过程进行了初步的实验研究。采用电子束能量调制的方法,测量了12C6+和36Ar18+离子束受到的纵向冷却力随离子-电子相对速度变化的函数,分析了电子束密度、形状及电子束-离子束夹角对36Ar18+离子受到的纵向冷却力大小的影响。通过改变Bump触发的间隔时间研究了12C6+离子的横向冷却效应。实验研究了电子束密度、形状对几种束流的累积效率及储存束流寿命的影响,以及Bump幅度、Bump时间结构、注入间隔时间、绝热展开因子等参数对束流累积效率的影响。实验测量并理论验证了12C6+和36Ar18+强流束的集体效应,探讨了强流离子束的不稳定性。最后,论文展望了在HIRFL-CSR上进一步开展电子冷却实验的方

    Similar works