Linking deadwood-associated beetles and fungi with wood decomposition rates in managed black spruce forests<sup>1</sup>This article is one of a selection of papers from the International Symposium on Dynamics and Ecological Services of Deadwood in Forest Ecosystems.

Abstract

Deadwood-associated insects and saprotrophic fungi are principal agents of wood decomposition in boreal forest. Silvicultural treatments that alter microclimate and availability of deadwood likely affect composition and growth rates of both insect and fungal communities, leading to changes in wood decomposition rates. Here, we relate both saproxylic beetle and dominant polypore assemblages with woody decomposition rates and environmental variables in experimental partial cuts, clearcuts, and uncut controls using a series of causal models to determine the relationship between stand structure, biodiversity, and ecosystem function in black spruce ( Picea mariana (Mill.) BSP) forests. Overall beetle and fungal composition differed between uncut stands and harvested stands. Main effects of harvesting included large increases in wood-feeding beetles and the fungus Gloeophyllum sepiarium (Wul.:Fr.) Karst. We suggest that these species were promoted by specific alterations in microhabitat conditions of deadwood. Within clearcuts specifically, changes in species composition and significantly more fungal degree-days resulted in significantly higher decomposition rates. We concluded that levels of partial cutting in the range of 15%–20% retention were not sufficient to maintain predisturbance communities but were sufficient to maintain wood decomposition rates similar to uncut stands. </jats:p

    Similar works

    Full text

    thumbnail-image

    Available Versions