research

Generalized covariation for Banach space valued processes, Ito formula and applications

Abstract

This paper discusses a new notion of quadratic variation and covariation for Banach space valued processes (not necessarily semimartingales) and related Itô formula. If X and Y take respectively values in Banach spaces B1 and B2 and χ is a suitable subspace of the dual of the projective tensor product of B1 and B2 (denoted by (B1⊗̂πB2) ∗), we define the so-called χ-covariation of X and Y. If X = Y, the χ-covariation is called χ-quadratic variation. The notion of χ-quadratic variation is a natural generalization of the one introduced by Métivier-Pellaumail and Dinculeanu which is too restrictive for many applications. In particular, if χ is the whole space (B1⊗̂πB1) ∗ then the χ-quadratic variation coincides with the quadratic variation of a B1-valued semimartingale. We evaluate the χ-covariation of various processes for several examples of χ with a particular attention to the case B1 = B2 = C([−τ, 0]) for some τ> 0 and X and Y being window processes. If X is a real valued process, we call window process associated with X the C([−τ, 0])-valued process X: = X(·) defined by Xt(y) = Xt+y, where y ∈ [−τ, 0]. The Itô formula introduced here is an important instrument to establish a representation result of Clark-Ocone type for a class of path dependent random variables of type h = H(XT (·)), H: C([−T, 0]) − → R for not-necessarily semimartingales X with finite quadratic variation. This representation will be linked to a function u: [0, T]×C([−T, 0]) − → R solving an infinite dimensional partial differential equation

    Similar works