research

Cyclohexyl(4-fluorophenyl)(3-piperidinopropyl)silanol (p-fluoro-hexahydro-sila-difenidol, p-F-HHSiD) and derivatives: synthesis and antimuscarinic properties

Abstract

Four different syntheses of the potent and selective muscanruc antagonist cyclohexyl( 4- fluorophenyl)(3-piperidinopropyl)silanol ( p-fluoro-hexahydro-sila-difenidol, p-F-HHSiD (2b); isolated as hydrochloride 2b· HCl) are described (starting materials: (CH3_3O)2_2SiCH2_2CH2_2CH2_2Cl and Si(OCH3_3)4_4 ). In addition, the synthesis of the corresponding carbon analogue p-fluoro-hexahydro-difenidol ( p-F-HHD (2a); isolated as 2a· HCI) and the syntheses of three p-F-HHSiD derivatives (3-5), with a modified cyclic amino group, are reported (3: piperidinojpyrrolidino exchange, isolated as 3· HCI; 4: piperidinoj hexamethylenimino exchange, isolated as 4 · HCl; 5: quaternization of 2b with methyl iodide). The chiral compounds 2a, 2b, 3, 4 and 5 were prepared as racemates. In functional pharmacological studies, 3-5 behaved as simple competitive antagonists at musearlnie Ml receptors in rabbit vas deferens, M2 receptors in guinea-pig atria, and M3 receptors in guinea-pig ileal smooth rnuscle. The pyrrolidino (3) and hexamethylenimino (4) analogues of the parent drug p-F-HHSiD (2b) displayed the highest affinity for Ml and M3 receptors (pA2_2 values: 7.0-7.4) but exhibited lower affinity for cardiac M2 receptors (pA2_2 : 5.9 and 6.0). Their affinity profile (Ml- M3 > M2) is different from that of p-F-HHSiD (2b) (M3 > Ml > M2), but qualitatively very similar tothat of p-F-HHD (2a). The methiodide 5 exhibited the highest affinity for Ml receptors (pA2_2 : 8.5) but lower affinity for M2 and M3 receptors by factors of 5.6 and 3.6, respectively

    Similar works