research

High-Resolution Scalar Quantization with Rényi Entropy Constraint

Abstract

We consider optimal scalar quantization with rrth power distortion and constrained R\'enyi entropy of order α\alpha. For sources with absolutely continuous distributions the high rate asymptotics of the quantizer distortion has long been known for α=0\alpha=0 (fixed-rate quantization) and α=1\alpha=1 (entropy-constrained quantization). These results have recently been extended to quantization with R\'enyi entropy constraint of order αr+1\alpha \ge r+1. Here we consider the more challenging case α[,0)(0,1)\alpha\in [-\infty,0)\cup (0,1) and for a large class of absolutely continuous source distributions we determine the sharp asymptotics of the optimal quantization distortion. The achievability proof is based on finding (asymptotically) optimal quantizers via the companding approach, and is thus constructive

    Similar works