unknown

Motion planning algorithms for a group of mobile agents

Abstract

Building autonomous mobile agents has been a major research effort for a while with cooperative mobile robotics receiving a lot of attention in recent times. Motion planning is a critical problem in deploying autonomous agents. In this research we have developed two novel global motion planning schemes for a group of mobile agents which eliminate some of the disadvantages of the current methods available. The first is the homotopy method in which the planning is done in polynomial space. In this method the position in local frame of each mobile agent is mapped to a complex number and a time varying polynomial contains information regarding the current positions of all mobile agents, the degree of the polynomial being the number of mobile agents and the roots of the polynomial representing the position in local frame of the mobile agents at a given time. This polynomial is constructed by finding a path parameterized in time from the initial to the goal polynomial (represent the initial and goal positions in local frame of the mobile agents) so that the discriminant variety or the set of polynomials with multiple roots is avoided in polynomial space. This is equivalent to saying that there is no collision between any two agents in going from initial position to goal position. The second is the homogeneous deformation method. It is based on continuum theory for motion of deformable bodies. In this method a swarm of vehicles is considered at rest in an initial configuration with no restrictions on the initial shape or the locations of the vehicles within that shape. A motion plan is developed to move this swarm of vehicles from the initial configuration to a new configuration such that there are no collisions between any vehicles at any time instant. It is achieved via a linear map between the initial and desired final configuration such that the map is invertible at all times. Both the methods proposed are computationally attractive. Also they facilitate motion coordination between groups of mobile agents with limited or no sensing and communication

    Similar works