Abstract

Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 77 (2012): 582–599, doi:10.1016/j.gca.2011.10.008.To investigate the extent of hydrogen isotope (2H and 1H) exchange between hydrocarbons and water under hydrothermal conditions, we performed experiments heating C1–C5 n-alkanes in aqueous solutions of varying initial 2H/1H ratios in the presence of a pyrite-pyrrhotite-magnetite redox buffer at 323ºC and 35–36MPa. Extensive and reversible incorporation of water-derived hydrogen into C2–C5 n-alkanes was observed on timescales of months. In contrast, comparatively minor exchange was observed for CH4. Isotopic exchange is facilitated by reversible equilibration of n-alkanes and their corresponding n-alkenes with H2 derived from the disproportionation of water. Rates of δ2H variation in C3+ n-alkanes decreased with time, a trend that is consistent with an asymptotic approach to steady-state isotopic compositions regulated by alkane-water isotopic equilibrium. Substantially slower δ2H variation was observed for ethane relative to C3–C5 n-alkanes, suggesting that the greater stability of C3+ alkenes and isomerization reactions may dramatically enhance rates of 2H/1H exchange in C3+ n-alkanes. Thus, in reducing aqueous environments, reversible reaction of alkenes and their corresponding alkanes facilitates rapid 2H/1H exchange between alkyl- and water-bound hydrogen on relatively short geological timescales at elevated temperatures and pressures. The proximity of some thermogenic and purported abiogenic alkane δ2H values to those predicted for equilibrium 2H/1H fractionation with ambient water suggests that this process may regulate the δ2H signatures of some naturally occurring hydrocarbons.This research received financial support from the Department of Energy (grant DE-FG02-97ER14746), the National Science Foundation (grant OCE-0549829) and the WHOI Deep Ocean Exploration Institute Graduate Fellowship (to E.P. Reeves)

    Similar works