CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
unknown
Mooring design using wave-state estimate from the Southern Ocean
Authors
Briscoe
Collins
+36 more
Cronin
D. J. M. Greenslade
Davis
Davis
Durrant
E. W. Schulz
Earle
Gobat
Grosenbaugh
Hamilton
Hill
Komen
L. Pender
Lawrence-Slavas
M. A. Grosenbaugh
Marshall
McPhaden
McPhaden
McPhaden
Meyers
National Meteorological and Oceanographic Centre
National Meteorological and Oceanographic Centre
Pender
Pollard
Raymond
Servain
T. W. Trull
Teng
Trask
Trask
Trull
WAMDI Group
Webster
Welch
Weller
Weller
Publication date
1 October 2011
Publisher
'American Meteorological Society'
Doi
Abstract
Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 28 (2011): 1351–1360, doi:10.1175/JTECH-D-10-05033.1.The Southern Ocean Flux Station was deployed near 47°S, 140°E. The extreme wind and wave conditions at this location require appropriate mooring design, which includes dynamic fatigue analysis and static analysis. An accurate estimate of the wave conditions was essential. A motion reference unit was deployed in a nearby test mooring for 6 months. The motion data provided estimates of significant wave height that agreed well with the Australian Bureau of Meteorology wave model, increasing confidence in the model performance in the Southern Ocean. The results of the dynamic fatigue analysis using three input wave datasets and implications for the mooring design are described. The design analysis predicts the fatigue life for critical mooring components and guided the final selection of links and chain shackles. The three input wave climatologies do not differ greatly, and this is reflected in minimal changes to mooring components for each of the fatigue analyses.Many years of logistic support for these deployments have been provided by the Australian Marine National Facility and the Australian Antarctic Sciences program (Award 1156). IMOS is funded through the Federal Government’s National Collaborative Research Infrastructure Strategy and the Super Science Initiative
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1175%2Fjtech-d-10-...
Last time updated on 05/06/2019
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 08/06/2012