CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
unknown
Export production and its regulating factors in the West Antarctica Peninsula region of the Southern Ocean
Authors
Michael L. Bender
Nicolas Cassar
+3 more
Hugh W. Ducklow
Kuan Huang
Maria Vernet
Publication date
24 April 2012
Publisher
'American Geophysical Union (AGU)'
Doi
Abstract
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB2005, doi:10.1029/2010GB004028.In connection with the Palmer LTER program, mixed layer water samples were collected during the cruise of the L.M. Gould in Jan., 2008 at 49 stations on a 20 × 100 km grid in the West Antarctica Peninsula (WAP) region of the Southern Ocean. In this study, [O2]/[Ar] ratios and the triple isotope composition of dissolved O2 were measured, and were used to estimate net community O2 production (NCP) and gross primary O2 production (GPP), respectively. These estimates are further converted to carbon export production, primary production and the f-ratio. Our measurements give NCP ranging from −3 to 76 mmol O2 m−2 day−1 (−25 to 650 mg C m−2 day−1), and GPP from 40 to 220 mmol O2 m−2 day−1 (180 to 1010 mg C m−2 day−1). The O2 NCP/GPP ratios range from −0.04 to 0.43, corresponding to f-ratios of −0.08 to 0.83. NCP and the NCP/GPP ratio are highest in the northern coastal areas, and decrease to lower values toward the southern coastal area and the open ocean. The inshore-offshore gradient appears to be regulated primarily by iron availability, as supported by the positive correlation between NCP and Fv/Fm ratios (r2 = 0.22, p < 0.05). Mixed layer depth (MLD) is inversely correlated with NCP (r2 = 0.21, p < 0.002) and NCP/GPP (r2 = 0.21, p < 0.02), and highest NCP occurred in the fresh water lenses probably formed from melted coastal glaciers. These results suggest that export production and the f-ratio increase where water stratification is intensified by input of fresh meltwater, and that mixed layer stratification is the major factor regulating NCP in the inner-shelf and coastal regions. Along-shelf variability of phytoplankton community composition is highly correlated with NCP, i.e., NCP increases when the diatom-dominated community in the south transitions to the cryptophyte-dominated one in the north. A high correlation is also observed between NCP and the logarithm of the surface chlorophyll concentration (r2 = 0.72, p < 0.0001) , which makes it possible to estimate carbon export as a function of Chl a concentration in this region.This research was supported by NSF-OPP grant 0823101 to Ducklow and NASA Earth and Space Sciences Fellowship to Huang.2012-10-2
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 08/06/2012