CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
unknown
Quantitative computed tomography of humpback whale (Megaptera novaeangliae) mandibles : mechanical implications for rorqual lunge-feeding
Authors
Arnold
Brodie
+25 more
Brodie
Campbell-Malone
Ciarelli
Currey
Daegling
Gilbert
Goldbogen
Goldbogen
Huang
Koolstra
Lambertsen
Lambertsen
Lanyon
Laval-Jeantet
Misch
Orton
Perrin
Pivorunas
Potvin
Schulte
Simon
Tsukrov
Vogel
von Dassow
Werth
Publication date
1 January 2010
Publisher
'Wiley'
Doi
Cite
Abstract
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 293 (2010): 1240-1247, doi:10.1002/ar.21165Rorqual whales (Balaenopteridae) lunge at high speed with mouth open to nearly 90 degrees in order to engulf large volumes of prey-laden water. This feeding process is enabled by extremely large skulls and mandibles that increase mouth area, thereby facilitating the flux of water into the mouth. When these mandibles are lowered during lunge-feeding, they are exposed to high drag and therefore may be subject to significant bending forces. We hypothesized that these mandibles exhibited a mechanical design (shape and density distribution) that enables these bones to accommodate high loads during lunge-feeding without exceeding their breaking strength. We used quantitative computed tomography (QCT) to determine the three-dimensional geometry and density distribution of a pair of sub-adult humpback whale (Megaptera novaeangliae) mandibles (length = 2.10 m). QCT data indicated highest bone density and crosssectional area, and therefore high resistance to bending and deflection, from the coronoid process to the middle of the dentary, which then decreased towards the anterior end of the mandible. These results differ from the caudorostral trends of increasing mandibular bone density in mammals such as humans and the right whale, Eubalaena glacialis, indicating that adaptive bone remodeling is a significant contributing factor in establishing mandibular bone density distributions in rorquals.This work was funded by an NSERC undergraduate summer research award to Daniel J. Field, and by an NSERC discovery grant to Robert E. Shadwick
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 08/06/2012
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 27/12/2021
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 11/12/2019
ESC Publications - Cambridge Univesity
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.esc.cam.ac.uk:4570
Last time updated on 04/12/2019