Oxidation-Induced Phase Transformations and Lifetime Limits of Chromia-Forming Nickel-Base Alloy 625

Abstract

For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of delta-Ni3Nb and (Ni,Mo,Si)6C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900–1000°C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates delta-Ni3Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known in literature as uphill-diffusion phenomenon. Also the M6C carbide is found to dissolve in the subsurface zone during high-temperature oxidation of alloy 625 although chromium is only a minor constituent in this (Ni3Mo3)C base carbide The thermodynamic calculations revealed the carbide dissolution to find its cause in the increasing carbon activity with decreasing chromium content which forced carbon to diffuse back from the subscale zone towards the bulk alloy resulting in carbide dissolution beneath the chromia scale. SPE is experimentally found to be substantially less pronounced in thin foils than in thick specimens of alloy 625. It could be shown that this effect is related to the smaller reservoirs of the scale-forming element chromium as well as that of the delta-Ni3Nb phase stabilizing element niobium in the thin specimens. As the thinner specimens (thickness in the range of 0.1 mm) become more rapidly depleted in chromium resulting in flatter chromium depletion profiles, a smaller driving force for uphill-diffusion of Nb towards the scale/alloy interface leads to a substantially less pronounced delta-phase enrichment/depletion than in specimens of a few mm thickness. Decreasing specimen thickness suppresses the enrichment/depletion process of the delta-Ni3Nb phase and results in complete dissolution of the M6C carbide after longer exposure times. SPE is not observed during oxidation of extremely thin-walled specimens, e.g. extremely thin foils or metal foam particles fabricated from alloy 625. During high-temperature oxidation of metal foams consisting of e.g. 20-60 µm diameter particles, the delta-Ni3Nb phase enrichment at the scale/alloy interface does not occur and can thus be virtually ignored when modelling the oxidation-induced lifetime limits of alloy 625 metal foams. The lifetime prediction based on the finite-difference calculation of the chromium depletion at the metal/oxide interface of a spherical metal foam particle showed a parabolic dependence of the time to breakaway from the foam particle radius. The predicted lifetimes were found to be in good agreement with the experimental results. A new analytical lifetime model to predict times to breakaway of thin-walled components (foils, wires, metal foams, etc.) was developed as an extension of the available lifetime models. The lifetime model derived is a simple mathematical expression which is able to substitute conventional robust equations thus making the lifetime prediction less time consuming and more efficient. The simplified lifetime treatment shows excellent agreement with the conventional lifetime models and is also in good agreement with the experimental breakaway results for alloy 625 metal foams

    Similar works