Spojeni mlaz je fenomen turbulentnog strujanja koji u sustavima ventilacije nastaje meñusobnom interakcijom dvaju nasuprotnih zračnih mlazova iz susjednih istrujnih otvora te mu je, iako predstavlja važan čimbenik toplinske ugodnosti u zoni boravka, u dosadašnjim istraživanjima u ventilaciji posvećeno vrlo malo pozornosti. Cilj istraživanja je temeljem teorije samosličnosti strujanja u razvijenoj zoni turbulentnog mlaza razviti bezdimenzijski matematički model koji bi omogućio procjenu brzine i intenziteta turbulencije zraka kao veličina o kojima ovisi osjećaj propuha u zoni spojenog mlaza, a koji bi u primjeni bio znatno jeftiniji i jednostavniji od složenih CFD proračuna koji još uvijek ne daju pouzdane rezultate kod ovakvih strujanja. Razvoj modela temelji se na eksperimentalnim mjerenjima brzine i intenziteta turbulencije CTA anemometrom te na teorijskoj analizi strujanja uz primjenu analitičkih i jednostavnih numeričkih metoda. Obzirom na oskudna istraživanja vrtložnog ventilacijskog difuzora za proizvodnju mlaza, odabran je vrtložni radijalni stropni difuzor. Mjerenja su vršena u zoni izotermnog priljubljenog stropnog radijalnog mlaza i u zoni izotermnog spojenog mlaza koji nastaje interakcijom te koji se takoñer, na temelju dokaza drugih autora, smatra radijalnim mlazom te se opisuje modelom strujanja slobodnog radijalnog mlaza usmjerenog prema zoni boravka. \Nalaženje rješenja osrednjenog strujanja radijalnog mlaza, kao unaprjeñenje dosadašnjih rješenja, temelji se na pretpostavci o razdiobi brzine u glavnom smjeru strujanja u obliku Gaussove funkcije, te uzimajući u obzir da turbulentna viskoznost u zoni mlaza nije konstantna. S obzirom da eksperimentalni rezultati govore da spojeni mlaz ima više nego dvostruko veći koeficijent širenja od klasičnog radijalnog mlaza, provedena je analiza primjenjivosti Prandtlovih pretpostavki graničnog sloja te su rješenja osrednjenog strujanja donesena uz primjenu i bez primjene pojednostavljenja graničnog sloja. Uz primjenu ovih pretpostavki došlo se do analitičkog rješenja za razdiobu turbulentne viskoznosti, srednje brzine i turbulentnog naprezanja dok je bez primjene ovih pretpostavki bilo potrebno primijeniti jednostavne numeričke metode. Kinetička energija turbulencije odnosno intenzitet turbulencije dobiven je numeričkim rješenjem transportne jednadžbe kinetičke energije turbulencije pri čemu su, kao modeli turbulencije, korištena rješenja \Navier-Stokesove jednadžbe odnosno turbulentne viskoznosti dobivene uz i bez primjene pretpostavki graničnog sloja. Usporedba razvijenog modela s eksperimentalnim rezultatima govori o dobrom slaganju rezultata srednje brzine, turbulentnog naprezanja i kinetičke energije turbulencije u usporedbi s rezultatima klasičnog mlaza drugih autora. Slaganje teorijskog modela s eksperimentalnim rezultatima intenziteta turbulencije u spojenom mlazu je bolje u slučaju bez primjene pretpostavki graničnog sloja nego u slučaju primjene ovih pretpostavki