In 1984, the University of Bonn (FRG) and IIASA created a joint research group to analyze the relationship between economic growth and structural change. The research team was to examine the commodity composition as well as the size and direction of commodity and credit flows among countries and regions. Krelle (1988) reports on the results of this "Bonn-IIASA" research project.
At the same time, an informal IIASA Working Group was initiated to deal with problems of the statistical analysis of economic data in the context of structural change: What tools do we have to identify nonconstancy of model parameters? What type of models are particularly applicable to nonconstant structure? How is forecasting affected by the presence of nonconstant structure? What problems should be anticipated in applying these tools and models? Some 50 experts, mainly statisticians or econometricians from about 15 countries, came together in Lodz, Poland (May 1985); Berlin, GDR (June 1986); and Sulejov, Poland (September 1986) to present and discuss their findings. This volume contains a selected set of those conference contributions as well as several specially invited chapters.
The introductory chapter "What can statistics contribute to the analysis of economic structural change?", discusses not only the role of statistics in the detection and assimilation of structural changes, but also the relevance of respective methods in the evaluation of econometric models. Trends in the development of these methods are indicated, and the contributions to the present volume are put into a broader context of empirical economics to help to bridge the gap between economists and statisticians.
The chapters in the first section are concerned with the detection of parameter nonconstancy. The procedures discussed range from classical methods, such as the CUSUM test, to new concepts, particularly those based on nonparametric statistics. Several chapters assess the conditions under which these methods can be applied and their robustness under such conditions.
The second section addresses models that are in some sense generalizations of nonconstant-parameter models, so that they can assimilate structural changes.
The last section deals with real-life structural change situations