In this paper, we propose a new interactive procedure for solving multiple objective programming problems. Based upon feed-forward artificial neural networks (FFANNs), the method is called the Interactive FFANN Procedure. In the procedure, the decision maker articulates preference information over representative samples from the nondominated set either by assigning preference "values" to the sample solutions or by making pairwise comparisons in a fashion similar to that in the Analytic Hierarchy Process. With this information, a FFANN is trained to represent the decision maker's preference structure. Then, using the FFANN, an optimization problem is solved to search for improved solutions. An example is given to illustrate the Interactive FFANN Procedure. Also, the procedure is compared computationally with the Tchebycheff Method (Steuer and Choo 1983). From the computational results, the Interactive FFANN Procedure produces good results and is robust with regard to the neural network architecture