Preserving the environment is a major challenge for today’s aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from École de Technologie Supérieure, École Polytechnique de Montréal and Naples University. Teams from ‘CIRA’ and IAR-NRC research institutes had, also, contributed on this project.
The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by ‘CFD’ numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron’s angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa.
The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The ‘CANopen’ protocol is implemented to ensure real time communication between the ‘BLDC’ drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive.
The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values.
Two ‘sets’ of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the opportunity to validate the implemented control platform. Control and calibration results were excellent as they satisfied the desired objectives in terms of precision and robustness. The maximum static error obtained for the skin displacement control was 0.03 mm. The analysis of the pressure data and balance loads has shown that the drag was reduced for many cases among those tested. Almost 30% of the cases were optimized for drag reduction