thesis

Étude biomécanique des traumatismes vertébro-médullaires du rachis humain

Abstract

Les traumatismes du rachis incluent des fractures osseuses, des lésions discoligamentaires et des blessures médullaires. Ils impliquent un fort coût pour le système de santé, ainsi qu’une prise en charge (durée d’hospitalisation, atteinte de l’intégrité physique) lourdement handicapante pour leurs victimes. Les séquelles peuvent aller d’une déformation du profil sagittal à la tétraplégie. Leurs causes principales sont les accidents véhicules moteurs, les chutes et les accidents sportifs. Il existe de multiples mécanismes d’apparition des fractures vertébrales (compression, flexion-extension, cisaillement, torsion) et des blessures médullaires (contusion, traction, cisaillement), ce qui rend leur étude complexe. Malgré l’important investissement mis dans la recherche à ce sujet, des lacunes persistent dans la compréhension de ces traumatismes, qui ralentissent la progression des dispositifs de protection du rachis et le développement des techniques chirurgicales. Dans ce contexte, l’objectif principal de ce doctorat est d’améliorer la compréhension fondamentale des mécanismes de fractures vertébrales et des blessures de la moelle épinière. Suite à l’identification des constats principaux présents dans la littérature et des lacunes de l’état des connaissances actuelles, deux hypothèses de recherche ont été posées. H1. Il existe un lien entre la sollicitation mécanique traumatique et les cartographies cliniques des patrons de fractures rapportées dans la littérature. H2. Lors d’une contusion médullaire le liquide céphalo-rachidien joue un rôle protecteur quantifiable et le comportement lésionnel dépend du niveau vertébral. Cette thèse vise donc deux objectifs majeurs. Ainsi, la première concerne l’étude des causes mécaniques des différents patrons de fracture vertébrale, et la seconde l’étude des mécanismes d’apparition de la contusion médullaire. Dans chacune des deux parties, des méthodes d’imagerie, expérimentales ou numériques ont été mises en oeuvre pour (i)améliorer la définition de propriétés morphologiques ou mécaniques de tissus biologiques concernés; ou (ii) reproduire et caractériser les lésions vertébrales ou médullaires. L’atteinte du premier objectif, à savoir l’établissement d’un lien entre la classification des différents patrons de fracture vertébrale et leur cause mécanique a nécessité de répondre à deux sous-objectifs de recherche. 1) Tout d’abord des protocoles expérimentaux ont été mis en place afin de décrire la répartition des propriétés mécaniques anisotropiques de l’os trabéculaire vertébral. La première étape a été de créer un modèle de prédiction de ces propriétés à partir de paramètres microstructuraux de l’os trabéculaire vertébral. Des paramètres microstructuraux ont été calculés pour les images μCT de cubes d’os trabéculaire vertébral humains. Ces mêmes cubes ont été compressés jusqu’à la rupture dans une machine de tests mécaniques. Une analyse de régression linéaire a alors été utilisée pour obtenir un modèle de prédiction des propriétés mécaniques anisotropiques à partir des paramètres microstructuraux. Le modèle de prédiction résultant de cette analyse rend compte de 51 à 85% de la variance dans les mesures expérimentales. La deuxième étape a été d’utiliser le modèle de prédiction ainsi créé sur des images micro-tomodensitométrie de 13 vertèbres cadavériques humaines intactes. Des paramètres microstructuraux ont été calculés dans 69 volumes d’intérêts pour chacune de ces vertèbres (3 tranches dans la direction rostro-caudale, 23 zones par tranche). Le module d’Young et la force à la rupture dans 3 directions ont été déterminés à partir des propriétés microstructurales, dans chacun des 897 volumes d’intérêts résultants. La cartographie des propriétés micro-structurelles et mécaniques a été proposée en calculant les moyennes et la déviation standard de chaque paramètre pour les 13 vertèbres. Des tests de Student ont été utilisés pour évaluer les différences entre les zones antérieure et postérieure, centrale et périphérique, et proximale, médiale et distale du corps vertébral. Les résultats ont montré que la tranche distale est significativement différente des tranches proximale et distale. Aussi, la subdivision en zones centrale et périphérique a été plus représentative en comparaison à la subdivision en zones antérieure et postérieure. 2) Les connaissances fondamentales acquises par le biais de cette étude permettront de renseigner des modèles éléments finis, tels que le modèle « Spine Model for Safety and Surgery » (SM2S), qui a été utilisé pour répondre au premier objectif. Un segment de trois vertèbres et des tissus connectifs intervertébraux a été extrait du modèle SM2S et soumis à 51 conditions de chargement dynamiques différentes divisées en quatre catégories : compression, cisaillement, traction et torsion. L’initiation et la propagation de la fracture ont été analysées et le temps et l’énergie à l’apparition de la fracture ont été mesurés. À chaque patron de fracture décrit dans la littérature a été associé un ou plusieurs des patrons de fracture simulés, ainsi que les conditions limites correspondantes. Quand comparées entre elles, les fractures en torsion sont apparues à faibles énergies, les fractures en compression ou cisaillement à moyennes énergies, et les fractures en traction à hautes énergies. Une augmentation de la vitesse de chargement a causé des fractures à plus haute énergie, pour des modes de chargements similaires. L’utilisation d’un modèle par éléments finis (MEF) a fourni une caractérisation quantitative de l’apparition des patrons de fractures complémentaire aux études cliniques et expérimentales, permettant ainsi de mieux comprendre la biomécanique des fractures vertébrales. L’atteinte du second objectif, à savoir de caractériser la biomécanique de la contusion médullaire, a nécessité de répondre à quatre objectifs de recherche spécifiques. 1) Premièrement, il a été nécessaire de fournir des caractéristiques morphologiques de la moelle épinière saine humaine complète. Ceci a permis de proposer des paramètres « invariants » qui pourront servir de données normatives pour l’étude des lésions de la moelle épinière. Les dimensions absolues de la moelle épinière (diamètres transverse et antéro-postérieur, écartement des cornes antérieures et postérieures, aire de la section transverse, et pourcentage de substance blanche) ont été mesurées par segmentation semi-automatique d’images IRM à haute résolution de volontaires jeunes (N=15) et âgés (N=8). La robustesse des mesures, les effets de l’individu, de l’âge et du sexe, ainsi que la comparaison avec des données post mortem issues de la littérature ont été analysés statistiquement (Analyse de variance, Tuckey-HSD, Bland-Altman). L’utilisation de paramètres normalisés par rapport à C3 comme invariants a été évaluée par une étude de type « leave-one-out ». La morphologie du canal spinal a été mesurée et les valeurs extrêmes du ratio d’occupation du canal par la moelle ont été déterminées. Ce travail a fourni des observations qui devraient bénéficier à l’étude biomécanique et clinique des pathologies médullaires. 2) Dans l’objectif d’utiliser l’outil numérique pour étudier la contusion médullaire, les propriétés morphologiques ainsi décrites ont dû être complétées par la caractérisation de propriétés mécaniques de la moelle épinière sous des conditions dynamiques adaptées à l’étude des traumatismes. L’étude suivante a donc visé à définir des propriétés mécaniques dynamiques pour des échantillons de moelle épinière porcine soumis à une compression transverse. Des compressions simples et des tests de type DMA (Dynamic Mechanical Analysis) à différentes modalités de vitesse de déformation ont été effectués sur un total de 252 segments de moelle épinière. Les courbes contrainte-déformation résultantes et les paramètres obtenues par DMA ont été comparés entre les différents niveaux vertébraux et modalités de chargement. Les spécimens ont affiché un comportement viscoélastique non-linéaire et l’endommagement est apparu entre 60 et 80% de déformation, dépendamment de la vitesse de déformation (significativement plus élevé pour des vitesses de déformations plus faibles). L’augmentation des valeurs de contrainte avec la vitesse de déformation a été non linéaire. Ceci a été expliqué par les résultats de DMA, qui ont montré que la viscosité de la moelle épinière (et donc sa sensibilité à la vitesse de déformation) n’était pas constante pour les fréquences testées. Les résultats ont permis de comprendre le comportement mécanique de la moelle épinière, et de fournir des données qui pourront servir à la définition de modèles par éléments finis. 3) Les propriétés géométriques et mécaniques de la moelle épinière décrites dans cette partie de la thèse permettent de renseigner des MEFs. Ainsi, un MEF de moelle épinière et des structures anatomiques environnantes (pie-mère, dure-mère, racines nerveuses, liquide céphalo-rachidien) a été développé et utilisé pour comprendre la biomécanique de la contusion médullaire. Deux segments (thoracique et lombaire) de moelle épinière ont été utilisés. Les segments ont été impactés à 4.5m.s-1 pour reproduire une contusion médullaire causée par une fracture vertébrale comminutive. Le pourcentage de compression, la contrainte de Von Mises, et la cinématique de la lésion ont été observés, et comparés à des données expérimentales de référence. Les résultats ont été similaires aux données de la littérature. La moelle épinière a subi 7% de compression en plus au niveau thoracique, en comparaison au niveau lombaire, à cause des variations géométriques des substances grise et blanche. Le LCR a diminué le pourcentage de compression jusqu’à 14%. Le plus haut niveau de contrainte a été localisé dans les cornes antérieures de la substance grise, et correspondait aux descriptions du « central cord syndrome ». Cette étude confirme le rôle protectif du LCR sur les blessures médullaires, et le besoin d’une décompression rapide après un traumatisme du rachis. Enfin, un modèle similaire a été créé pour reproduire des contusions médullaires effectuées expérimentalement sur des spécimens murins. La comparaison des résultats de ces simulations avec les mesures faites expérimentalement et le suivi IRM et histologique de chaque spécimen a permis d’établir un début de critère lésionnel mécanique pour la moelle épinière. Cette dernière étude reste préliminaire et permettra, lors de son développement, de créer un vrai lien entre la fracture vertébrale et la lésion médullaire. Les résultats générés dans cette thèse ont tout d’abord permis de confirmer l’existence d’un lien entre les conditions de chargement mécanique lors de traumatismes vertébraux et les patrons de fractures observés cliniquement. Toutefois, il est apparu que plusieurs modes de sollicitations peuvent mener à des patrons de fractures similaires. Certaines fractures observées cliniquement doivent donc être analysées avec attention, leur historique et potentielles blessures médullaires associées étant potentiellement multiples. De même, la contribution du liquide céphalo-rachidien dans la protection de la moelle épinière, et l’influence du niveau vertébral lors d’une contusion ont été quantifiés. L’interprétation des résultats soutient le choix d’une décompression rapide lors de la prise en charge chirurgicale d’une blessure médullaire. Enfin, les résultats générés tout au long de cette thèse ont permis de donner un ensemble de recommandations en rapport au développement de dispositifs de protection du rachis et de techniques chirurgicales. De plus, des connaissances fondamentales ont été acquises qui permettront d’améliorer les outils utilisés pour l’étude des traumatismes du rachis, tels que les modèles par éléments finis

    Similar works