research

A real-time pricing scheme for residential energy systems using a market maker

Abstract

Voltage rise is an undesirable side-effect of solar photovoltaic (PV) generation, arising from the flow of surplus electrical power back into the grid when PV generation exceeds local demand. Customers deploying residential-scale battery storage are likely to further exacerbate voltage rise problems for electrical utilities unless the charge/discharge schedules of batteries are appropriately coordinated. In this paper, we present a real-time pricing mechanism for use in a network of distributed residential energy systems (RESs), each employing solar PV generation and battery storage. The pricing mechanism proposed in this paper is based on a Market Maker algorithm in which predicted power profiles and real-time pricing information is iteratively exchanged between a central entity and each of the RESs. The Market Maker formulation presented in this paper is shown via simulation studies to converge to a fixed price vector, thereby reducing the price volatility observed in an earlier formulation, while achieving the same reduction in power usage variability as a centralised model predictive control (MPC) scheme presented previously

    Similar works