CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Electron emission of Au nanoparticles embedded in ZnO for highly conductive oxide
Authors
PS Huang
DH Kim
JK Lee
Publication date
1 January 2014
Publisher
'AIP Publishing'
Doi
Cite
Abstract
We investigated the effect of embedded Au nanoparticles (Au NPs) on electrical properties of zinc oxide (ZnO) for highly conductive oxide semiconductor. Au NPs in ZnO films influenced both the structural and electrical properties of the mixture films. The electrical resistivity decreases by as much as five orders of magnitude. This is explained by the electron emission from Au NPs to the ZnO matrix. Temperature-dependent Hall effect measurements show that an electron emission mechanism changes from tunneling to thermionic emission at T = 180 K. The electron mobility in the mixture film is mainly limited by the grain boundaries at lower temperature (80-180 K), and the Au/ZnO heterogeneous interface at higher temperature (180-340 K). In addition to the electron emission, embedded Au NPs alter the ZnO matrix microstructure and improve the electron mobility. Compared to the undoped ZnO film, the carrier concentration of the Au NP-embedded ZnO film can be increased by as much as six orders of magnitude with a small change in the carrier mobility. This result suggests a way to circumvent the inherent tradeoff between the carrier concentration and the carrier mobility in transparent conductive oxide (TCO) materials. © 2014 AIP Publishing LLC
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:232...
Last time updated on 15/12/2016
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:232...
Last time updated on 23/11/2016
D-Scholarship@Pitt
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:232...
Last time updated on 09/05/2016
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1063%2F1.4870648
Last time updated on 13/11/2020