Virtual Modelling and Simulation of a CNC Machine Feed Drive System

Abstract

This paper deals with the virtual modelling and simulation of a complex CNC machine tool feed drive system. The first phase of the study was the modelling of a very complex structure of the feed drive which consists of many elements (position, velocity and current control regulators, actuators, mechanical transmission elements, etc.). All these elements have great influence on important parameters of the machine tool such as movement stability, positioning accuracy and dynamic stiffness. For the modelling of the system the Matlab-SIMULINK and Matlab-Sim Scape Toolbox software was used. The Matlab-Sim Scape Toolbox allowed us to use the complete CAD model of the geometry of the machine tool, automatically calculating the selected properties. The influence of changing and optimizing several feed drive parameters (position loop gain Kv, proportional gain Kp of the velocity controller, integral gain of velocity controller-Tn, electrical drive time constant Te, total moving mass m, sampling period Ts, etc.) on the positioning accuracy and the dynamic stiffness was simulated, tested and validated. The finished Matlab-Simulink and Sim Scape models were initially visualized in the Matlab program. They were very simplified, comparing with their later visualization in the Virtual Reality EON Studio program

    Similar works