Teaching physiology: blood pressure and heart rate changes in simulated diving

Abstract

Background and Purpose: Physiology exercise employing simulated diving is used in our curriculum to integrate knowledge in cardio-respiratory physiology. Aim was to improve model used in physiology exercise by employing continuous recordings of arterial pressure and heart rate. Materials and Methods: Total of 55 medical and dental students volunteered for the exercise. They were instrumented with photoplethysmographic blood pressure and heart rate device, as well as with pulse oxymetry. Continuous measurement of variables was undertaken while students performed apneas or breathed through snorkel in air or in cold water, or temperature change was applied to their forehead. Results: Employment of continuous recordings enabled detailed insight into changes in selected cardiovascular parameters during 30 seconds breathholding. Time course of the changes showed marked biphasic response. When face was submerged in cold water during apnea, arterial pressure initially decreased and heart rate increased. At the end of breath-hold, arterial pressure increased and heart rate decreased, respectively. Corresponding changes were less pronounced when breath-hold was performed without face immersion. Conclusion: Improved protocol in laboratory exercise enabled us to show two distinct phases in changes of cardiovascular variables which are characteristic of diving reflex. We showed students how modern technology can improve their studies in near future and encouraged and motivate them to participate actively in exercise

    Similar works