Abstract

1. We investigated the action of TsTX-Kα on cloned Kv1.3 channels of the Shaker subfamily of voltage-gated potassium channels, using the voltage–clamp technique. Highly purified TsTX-Kα was obtained from the venom of the Brazilian scorpion Tityus serrulatus using a new purification protocol. Our results show that TsTX-Kα blocks Kv1.3 with high affinity in two expression systems. 2. TsTX-Kα blockade of Kv1.3 channels expressed in Xenopus oocytes was found to be completely reversible and to exhibit a pH dependence. The K(D) was 3.9 nM at pH 7.5, 9.5 nM at pH 7.0 and 94.5 nM at pH 6.5. 3. The blocking properties of TsTX-Kα in a mammalian cell line (L929), stably transfected to express Kv1.3, were studied using the patch–clamp technique. In this preparation, the toxin had a K(D) of 19.8 nM at pH 7.4. 4. TsTX-Kα was found to affect neither the voltage-dependence of activation, nor the activation and deactivation time constants. The block appeared to be independent of the transmembrane voltage and the toxin did not interfere with the C-type inactivation process. 5. Taken as a whole, our findings indicate that TsTX-Kα acts as a simple blocker of Kv1.3 channels. It is concluded that this toxin is a useful tool for probing not only the physiological roles of Kv1.2, but also those mediated by Kv1.3 channels

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019