Computational Studies of PVDF and P(VDF-TrFE) Nanofilms Polarization during Phase Transition Revealedby Emission Spectroscopy

Abstract

Electronic structure and self-polarization of P(VDF-TrFE) Langmuir-Blodgett nanofilms according to their thickness, composition and structural conformation under temperature phase transition were analyzed. Both thermo-stimulated exoelectron emission (TSEE) spectroscopy and computational simulation, including quantum-chemical calculations from first principles, were provided. PVDF and composite P(VDF-TrFE) (70:30) molecular chains as Trans and Gauche conformers as well as crystal cells were modeled for these agreed-upon TSEE analyses. The quantum-chemical calculations and the computational simulation were based on the density functional theory (DFT) as well as semi-empirical (PM3) methods. It was demonstrated that the energies of electron states as well as the total energies of the studied PVDF and P(VDFTrFE) molecular clusters during phase transformation influenced electron work function and electron affinity. The performed combined analysis of the TSEE experimental data as well as the computational data of the molecular models showed the effectiveness of that joined approach. TSEE for the first time was in use for contactless measurements of nanofilm polarization and characterizations of the phase transition. The proposed new method can be widely used in nanobiomedicine, particularly in development of new bone bio-implants, including built-in sensors (new smart nanotechnology)

    Similar works

    Full text

    thumbnail-image

    Available Versions