slides

Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n^+p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H_2(g)

Abstract

The electrocatalytic performance for hydrogen evolution has been evaluated for radial-junction n^+p-Si microwire (MW) arrays with Pt or cobalt phosphide, CoP, nanoparticulate catalysts in contact with 0.50 M H_2SO_4(aq). The CoP-coated (2.0 mg cm^(–2)) n^+p-Si MW photocathodes were stable for over 12 h of continuous operation and produced an open-circuit photovoltage (V_(oc)) of 0.48 V, a light-limited photocurrent density (J_(ph)) of 17 mA cm^(–2), a fill factor (ff) of 0.24, and an ideal regenerative cell efficiency (η_(IRC)) of 1.9% under simulated 1 Sun illumination. Pt-coated (0.5 mg cm^(–2)) n^+p-Si MW-array photocathodes produced V_(oc) = 0.44 V, J_(ph) = 14 mA cm^(–2), ff = 0.46, and η = 2.9% under identical conditions. Thus, the MW geometry allows the fabrication of photocathodes entirely comprised of earth-abundant materials that exhibit performance comparable to that of devices that contain Pt

    Similar works