research

Depth estimates of large earthquakes on the Island of Hawaii since 1940

Abstract

Although hypocenters of earthquakes on the island of Hawaii are now routinely assigned to within 5 km, depth was a poorly determined parameter until the early 1960's. However, the 1950–1960 period was very active both in volcanic eruptions and large earthquakes. Source depths for the 12 largest Hawaiian earthquakes (magnitude 6 or greater) since 1940 are estimated from the ratios of body and surface wave amplitudes recorded at Pasadena, California. Excitation functions for Rayleigh waves are calculated as a function of source depth for the two dominant periods in the Pasadena records, 8s and 20s. Theoretical body wave amplitudes are determined from synthetic seismograms. Calculated ratios are very sensitive to source depth; for example, amplitudes of 8-s Rayleigh waves diminish by a factor of 300 between depths of 10 km and 50 km. This is a much larger effect than the fault geometry, which we estimate to be a factor of 4 between representative focal mechanisms. Estimated depths for post-1960 earthquakes agree fairly well with the instrumental depths. In general, large earthquakes near the volcanic flanks and fault systems are shallow (≤20 km). Two earthquakes of magnitude 6 occurred under the volcanoes Mauna Loa (in 1950) and Kilauea (in 1951); they preceded major eruptions by 3 days and 14 months, respectively, and had the largest depth estimates at 40–55 km and 35–50 km. MS values assigned from global amplitudes are compared with those assigned from Pasadena amplitudes alone, for 70 events in 1973–1974 with 5.1≤ M_S ≤ 6.0. The global values are only slightly larger (0.05 magnitude units) than the Pasadena values, indicating that Pasadena amplitudes are on the average representative of the event magnitude

    Similar works