Abstract

1. The effects of cessation of chronic ethanol ingestion on seizure activity in vivo and on the characteristics of the evoked synaptic potentials in cortical neurones in vitro have been investigated in mice. Withdrawal from chronic ethanol treatment increased handling seizure ratings in mice between 4 and 16 h post-withdrawal. This ethanol-induced increase in seizure rating was unaffected by carbamazepine (30 mg kg(−1)) but significantly reduced at a higher concentration (130 mg kg(−1)). 2. Intracellular recordings were made from cortical layer II neurones in vitro from control mice and from mice following chronic ethanol ingestion. Evoked synaptic potentials were generated in these neurones through intralaminar stimulation. 3. Neurones from control mice displayed an evoked potential consisting of a fast excitatory postsynaptic potential (e.p.s.p.) mediated by AMPA-type glutamate receptors and an inhibitory postsynaptic potential (i.p.s.p.) mediated via GABA(A) receptors. Application of pentylenetetrazole (PTZ) or bicuculline onto these neurones inhibited the i.p.s.p., caused a large increase in both the amplitude and duration of the e.p.s.p. and initiated spontaneous excitatory activity. The resulting large evoked e.p.s.p. was mediated via both NMDA- and AMPA-type glutamate receptors. 4. Most neurones (77%) from ethanol treated mice displayed an evoked potential which comprised a large e.p.s.p. and no i.p.s.p. The e.p.s.p. consisted of several distinct components and in addition these neurones displayed spontaneous paroxysmal depolarizing shifts. This multi-component e.p.s.p. was mediated through both NMDA- and AMPA-type glutamate receptors. A population (23%) of neurones from ethanol treated mice exhibited evoked potentials which possessed both inhibitory and excitatory components and these neurones were effectively identical to those obtained from control mice. 5. Carbamazepine reduced the duration of the e.p.s.p. in neurones from ethanol treated mice and in PTZ-treated control neurones. 6. Prolonged ethanol ingestion is known to create a neurochemical imbalance in cortical neurones resulting in abnormal neurotransmission. The present study highlights the functional consequences that arise as a result of these neurochemical changes leading to over-excitation of neurones and pronounced epileptiform activity

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019