Proinflammatory cytokine production and insulin sensitivity regulated by overexpression of resistin in 3T3-L1 adipocytes

Abstract

Resistin is secreted from adipocytes, and high circulating levels have been associated with obesity and insulin resistance. To investigate whether resistin could exert autocrine effects in adipocytes, we expressed resistin gene in 3T3-L1 fibroblasts using a lentiviral vector, and selected several stably-transduced cell lines under blasticidin selection. We observed that 3T3-L1 adipocytes expressing resistin have a decreased gene expression for related transcriptional factors (CCAAT/enhancer binding protein α(C/EBPα) , peroxisome proliferator-activated receptor gamma (PPARγ), and adipocyte lipid binding protein (ALBP/aP2) which is one of target genes for the PPARγ during adipocyte differentiation,. Overexpression of resistin increased the levels of three proinflammatory cytokines, tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), which play important roles for insulin resistance, glucose and lipid metabolisms during adipogenesis. Furthermore, overexpressing resistin in adipocytes inhibits glucose transport 4 (GLUT4) activity and its gene expression, reducing insulin's ability for glucose uptake by 30 %. In conclusion, resistin overexpression in stably transduced 3T3-L1 cells resulted in: 1) Attenuation of programmed gene expression responsible for adipogenesis; 2) Increase in expression of proinflammatory cytokines; 3) Decrease in insulin responsiveness of the glucose transport system. These data suggest a new role for resistin as an autocrine/paracrine factor affecting inflammation and insulin sensitivity in adipose tissue

    Similar works