Modulatory role of adenosine upon GABAergic transmission : consequences for excitability control

Abstract

Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2015Glutamatergic principal cell excitability in the hippocampus is regulated by local circuit neurons that release the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). These GABAergic interneurons exhibit vast structural, physiological and biochemical diversity, innervating both excitatory principal cells and other inhibitory interneurons. In the hippocampus, two classes of interneurons, the cholecystokinin (CCK)- and parvalbumin (PV)-containing neurons, are the most significant and abundant cell type displaying unique and complementary functions in the control of principal cells output. Hence a tuned modulation of inhibitory circuits is of great importance in the control of network hippocampal function. Adenosine, acting through high affinity A1 receptor (A1R) and A2A receptor (A2AR), is a well-recognized endogenous modulator of glutamatergic principal cells excitability. Actions mediated by A1Rs are long-known to decrease hippocampal excitability with neuroprotective effects while actions through A2ARs are associated with increased neuronal excitability and excitotoxicity. However, the role of adenosine to modulate inhibitory transmission is much less known. This work aimed to evaluate and characterize the involvement of A1Rs (Chapter 5.1, p99) and A2ARs (Chapter 5.2, p143) on inhibitory neuronal communication in CA1 hippocampus and its impact on principal cells excitability and in the control of epileptiform discharges. These main goals were achieved by performing ex vivo electrophysiology recordings (field and patch-clamp recordings) from rat and mice hippocampus. Regarding A1R-actions, it was found that tonic - mediated by GABA receptor type A (GABAAR) localized peri- and extrasynaptically - but not phasic - mediated by GABAARs located at synapses - inhibitory transmission in pyramidal cells and CCKpositive interneurons were diminished after A1R activation. The effect was dependent on a signaling cascade involving both protein kinase A (PKA) and protein kinase C (PKC) and was accompanied by decreased GABAAR δ-subunit expression. On the other hand, it was also found that A2AR-mediated increase in pyramidal cells excitability results from a direct increase of glutamatergic transmission in parallel with disinhibition of principal cells by a mechanism that involves increased GABA release from PV-positive cells to other interneurons. Also, A2AR activation or blockage respectively promotes or reduces synchronous pyramidal cell firing in hyperexcitable conditions induced by elevated extracellular potassium or following high-frequency electrical stimulation. Together the results presented in this thesis show for the first time a direct involvement of adenosine receptors in the control of inhibitory network transmission in the hippocampus. This results open new promising perspectives for the involvement of adenosine in the control of physiological hippocampal operations and maladaptive conditions.A transmissão glutamatérgica no hipocampo é continuamente controlada por neurónios inibitórios, denominados interneurónios, que libertam o neurotransmissor ácido gama-aminobutírico (GABA). Estas células apresentam uma grande diversidade anatómica, fisiológica e bioquímica, estando descritos mais de vinte e um tipos diferentes de interneurónios no hipocampo. Estes são capazes de comunicar quer com células principais excitatórias (denominadas células piramidais), quer com outros interneurónios inibitórios, com resultados diferentes para a excitabilidade do sistema. A inibição de células piramidais leva a uma diminuição direta da sua excitabilidade; ao passo que a inibição de outros interneurónios pode resultar na desinibição das células principais e consequente aumento da excitabilidade. Desta grande variedade de interneurónios, destacam-se duas grandes classes que correspondem às duas populações de interneurónios mais importantes e abundantes no hipocampo – os neurónios que expressam colecistocinina (CCK) e os neurónios que expressam parvalbumina (PV). As funções de cada uma destas populações no hipocampo são únicas e complementares no controlo da atividade das redes neuronais. Desta forma, um controlo rigoroso destes circuitos inibitórios é de extrema importância na regulação das funções do hipocampo. A adenosina é um neuromodulador ubíquo do sistema nervoso central que atua através de dois grandes tipos de recetores de alta afinidade – os recetores A1 (A1R) e os recetores A2A (A2AR). Os primeiros têm ações principalmente inibitórias da excitabilidade neuronal, e portanto estão normalmente associados a funções neuroprotetoras, enquanto os segundos atuam no sentido de aumentar a excitabilidade no hipocampo e induzir excitotoxicidade. Enquanto que a função da adenosina no controlo da transmissão excitatória glutamatérgica tem vindo a ser caracterizada há várias décadas, o papel da adenosina na modulação da transmissão inibitória tem sido muito menos explorada. O trabalho apresentado nesta tese tem como objetivo a caracterização das ações dos A1Rs (Capítulo 5.1, p99) e dos A2ARs (Capítulo 5.2, p143) na comunicação neuronal inibitória no hipocampo bem como tentar perceber quais as consequências que uma possível modulação a este nível tem na excitabilidade das células piramidais e no desenvolvimento de atividade do tipo epiléptica. Para responder a estas questões foi planeado e executado um trabalho experimental que envolveu o registo da atividade elétrica neuronal no hipocampo de ratos e ratinhos através de técnicas eletrofisiológicas ex vivo (nomeadamente registos extracelulares e registos de patch-clamp). Relativamente às ações dos A1Rs, foi demonstrado que apenas um tipo de respostas inibitórias, denominadas por respostas tónicas, são afetadas pela ativação dos A1Rs, levando à sua diminuição. Este tipo de resposta tónica tem caraterísticas lentas e prolongadas no tempo e é mediada principalmente por recetores ionotrópicos do GABA do tipo A (GABAAR) que estão localizados em porções peri- e extrasináticas dos neurónios. Pelo contrário, as respostas habitualmente rápidas e concertadas no tempo, denominadas por respostas fásicas, e que são mediadas por recetores localizados nas sinapses, não parecem ser afetadas pela ativação dos A1Rs. Curiosamente, estas ações ocorrem seletivamente em neurónios excitatórios piramidais e numa subpopulação de interneurónios que expressam o neuropéptido CCK. O efeito dos A1Rs na diminuição das respostas tónicas está associado a uma cascata de sinalização intracelular que envolve as proteínas cinase A (PKA) e C (PKC) e é acompanhado pela diminuição da expressão de GABAARs que contêm a subunidade δ, habitualmente implicada nas respostas tónicas. Neste trabalho foi também demonstrado que a adenosina, através dos A2ARs, também influencia a transmissão inibitória no hipocampo. De facto, os efeitos da ativação dos A2ARs levam a um aumento da excitabilidade das células piramidais, que pode ser explicado pela ação destes recetores em dois locais: (1) a ativação dos A2ARs aumentam diretamente as respostas glutamatérgicas sobre as células piramidais; (2) simultaneamente, os A2ARs vão desinibir as células principais através de um mecanismo que envolve o aumento da libertação de GABA dos terminais sinápticos de neurónios que expressam PV e que contactam com outros neurónios inibitórios. Estas ações moduladoras têm implicações importantes em modelos de hiperexcitabilidade neuronal induzida pelo aumento das concentrações extracelulares de potássio, na medida em que a ativação ou inibição dos A2ARs leva a um exacerbação ou diminuição, respetivamente, desta hiperatividade neuronal sincronizada. No seu conjunto, os resultados apresentados nesta tese revelam, pela primeira vez, o envolvimento dos recetores de adenosina na modulação da transmissão neuronal inibitória no hipocampo. Estes resultados poderão abrir novas e promissoras perspetivas relativamente ao envolvimento da adenosina no controlo das funções do hipocampo em condições fisiológicas e patológicas.Network of European Neuroscience Schools; Medical Research Counci

    Similar works