Seismic vulnerability reduction: numerical modeling of FRP reinforcement using multifiber beams elements

Abstract

This paper presents a simplified modeling strategy for reproducing the behavior of beam-column structures reinforced with Polymer Reinforced Fibers (FRP). A 1D concrete constitutive model has been recently proposed, suitable for both monotonic and cycling loadings. The model is inspired on two well-known concrete laws, one based on damage mechanics theory (La Borderie concrete damage model) and one based on experimental studies (Eid & Paultre's confined concrete model). Spatial discretization is done using multifiber Timoshenko beam elements. Validation of the strategy is provided using two case studies: a retrofitted bridge pier and a vulnerability analysis on an existing building

    Similar works